Dirt Cheap: The Cost Of Erosion (Why Be Compliant?)

Erosion costs you money with every rain event

Eddie Snell
Applied Polymer Systems, Inc.

What If There Were No Rules Requiring Erosion And Sediment Mitigation?

Like: Back In The Day

Operating Costs:

- Equipment costs (rental/depreciation)
- Fuel
- Operators
- Site Delivery (soil)
- Labor
- Insurance
- Inspection/Survey

Road Construction Design Cost Estimates

mph	Idaho $10-12 \mathrm{CY}$ End Dump $\$ / \mathrm{CY}-$ Mile	Idaho $10-12 \mathrm{CY}$ End Dump \$/Ton- Mile	Idaho 18 CY Bottom Dump \$/Cr- Mile	Idahe 18 CY Bottom Dump \$/Ton- Mile	Montana $10-12 \mathrm{CY}$ End Dump $\$ / \mathrm{CY}-$ Mile	Montana $10-12 \mathrm{CY}$ End Dump $\$ /$ Ton- Mile	Montans 18 CY Bottom Dump $\$ / \mathrm{Cr}$ Mile	Montans 18 cY Bottom Dump $\$ /$ Ton- Mile
10	\$2.74	\$2.03	\$1.60	\$1.19	\$2.92	\$2.16	51.70	51.26
15	\$1.82	\$1.39	\$1.07	50.79	\$1.94	\$1.44	51.14	50.84
20	\$1.37	\$1.01	\$0.80	50.59	\$1.46	\$1.08	50.35	50.63
25	\$1.09	\$0.81	\$0.64	\$0.47	\$1.17	\$0.86	50.68	50.51
30	\$0.91	\$0.68	\$0.53	\$0.40	\$0.97	\$0.72	50.57	50.42
40	\$0.68	\$0.51	\$0.40	50.30	\$0.73	\$0.54	50.43	50.32
50	\$0.59	\$0.41	\$0.32	50.24	\$0.78	\$0.43	50.34	50.25

The total houl cost is the 2 um of the variable corty plus fixed corts
Total Haul Cast $=$ Total Variable Cost + Total Fixed Costs
Houl Caiculation Example
Given: Montans Zone 1
10-12 End Dump, 30 mph , 5 mile hsul
900 LOOSE CY

Road Segment	Average Speed Roundtrip (mph)	Length (Miles)	$\left(\begin{array}{c}\text { (Cubic Yard-Mile } \\ \text { (} \$ / \text { Ton-Mile) }\end{array}\right.$Loose CY (Tons)	Varisble Cost	
MP 5.0	30	5	$\$ 0.97$	500	$\$ 2425$

$$
\text { Fixed Cost }=500 \mathrm{CY} x \$ 2.43=\$ 1215
$$

$$
\text { Total Haul Cost }=\$ 2425+1215=\$ 3640
$$

$$
\text { Unit Haul Cost }=\frac{\$ 3640}{500 \mathrm{CY}}=\$ 7.28 / \mathrm{CY}
$$

Engineers Estimated Unit Cost $=\frac{s}{C Y} \times$ ADJUSTMENT FACTOR FOR PUBLIC WORKS DAVIS - BACON ZONES
Engineers Estimated Unit Cost $=\$ 7.28 x 0.97=\$ 7.06$
Specified Road Unit Cost $=\frac{1 / C Y}{\text { ADJUSTMENT FACTOR FOR CONSTMUCTION WACE RATE DIFFERENTLALS }}$

$$
\text { Specified Road Unit Cost }=\frac{\$ 7.06}{1.12}=\$ 6.30
$$

Table 12-Graders, Motor: (Basic machine plus EROPS and rear scarifiers):

Model	Engine	Moldboard size	Hourly Rate (\$)		
	HP	Feet	AZ, NM, UT	CO, ID, KS, NE, NV	CA, SD, WY
Caterpillar 120H 12' 125hp	125	12	39.93	68.22	39.93
Caterpillar 12H 12' 145hp	145	12	45.54	78.77	45.54
Deere 770C II 12' 155hp	155	12	52.25	92.09	62.25
Caterpillar 14H 14' 220hp	220	14	69.36	133.27	69.36
Caterpillar 16H 16' 285hp	285	16	88.50	173.60	88.50

Table 13 - Hydraulic Excavators: Crawler mounted tractor, with thumb, diesel powered:

Model	Capacity	Weight	Hourly Rate (\$)		
	Cubic Yards	Tons	AZ, ID, NM, UT	CO, KS, NE, NV	CA, SD, WY
Caterpillar 312C L 0.68cy 90 hp	0.68	14	73.69	75.76	79.16
Caterpillar 315C L 0.77cy 110 hp	0.77	18	87.30	89.70	93.65
Caterpillar 320C L 1.25 cy 138 hp	1.25	23	114.66	117.80	122.99
Caterpillar 325C L 1.5 cy 186 hp	1.25	30	134.18	137.62	143.31
Caterpillar 330C L 2.25 cy 244 hp	2.25	38	161.56	165.58	172.23
Caterpillar 345B L Series II 2.5 cy 321 hp	2.50	49	234.97	241.08	251.14
Caterpillar 365B L Series II 3.61 cy 404 hp	3.60	75	298.04	305.62	318.13
Caterpillar 385B L 6.0 cy 513 hp	6.00	94	390.60	400.95	418.03

Table 14 - MINI - Hydraulic Excavators: Crawler mounted tractor, diesel powered:

Model	Capacity	Hourly Rate (\$)		
	Cubic Yards	AZ, ID, NM, UT	CO, KS, NE, NV	CA, SD, WY
Deere 17ZTS(ROPS) 0.05cy bucket 12.3hp	0.05	11.60	11.88	12.36
CAT 303.5C CR Cab 0.27cy bucket 22.9hp	0.07	23.17	23.74	24.69

Table 29 - Pickups and flatbeds:

Axle Configuration	Capacity		Hourly Rate (\$)	
	Cubic Yards	AZ,ID,NM,UT	CO,KS,NE,NV	CA,SD,WY
4×2	$5-6$	44.80	45.43	46.35
6×4	$8-10$	69.91	70.80	72.10
6×4	$10-12$	87.73	88.86	90.52
6×4	$12-18$	94.66	96.03	98.04

Table 30 - Rear dump, highway type, diesel powered:

Axle Configuration	Capacity		Hourly Rate (\$)	
	Cubic Yards	AZ,ID,NM,UT	CO,KS,NE,NV	CA,SD,WY
4×2	$5-6$	44.80	45.43	46.35
6×4	$8-10$	69.91	70.80	72.10
6×4	$10-12$	87.73	88.86	90.52
6×4	$12-18$	94.66	96.03	98.04

Table 31 - Water tankers, highway:

Fuel	Capacity		Hourly Rate (\$)	
	Gallons	AZ,ID,NM,UT	CO,KS,NE,NV	CA,SD,WY
Gasoline	1500	47.36	47.90	48.69
Gasoline	2500	48.47	49.06	49.91
Diesel	2500	36.49	37.11	38.02
Diesel	3000	44.16	44.90	45.98
Diesel	3500	57.84	58.74	60.06
Diesel	4000	65.67	66.91	68.71

Hypothetical Costs: 5 acre area/2 days

>2 Dozers
>2 Compactors
>1 Grader
>2 Dump Trucks
>7 Operators
>6 Laborers
>5 Loads of Fill Soil

	Unit					
Equipment	Number	Cost/Hr.	Subtotal/Hr.	x 8 Hrs.	2 Day Cost	
Dozer	2	65	130	1040	2080	
Compactor	2	50	100	800	1600	
Grader	1	50	50	400	800	
Dump Truck	2	55	110	880	1760	
Equipment Operators	7	46	322	2576	5152	
Laborers	6	40	240	1920	3840	
Fill Dirt	5	100	500	500	500	
LOW TOTAL				$\$ 1,452$	$\$ 8,116$	$\$ 15,732$

	Unit					
Equipment	Number	Cost/Hr.	Subtotal/Hr.	x 8 Hrs.	2 Day Cost	
Dozer	2	70	140	1120	2240	
Compactor	2	62	124	992	1984	
Grader	1	75	75	600	1200	
Dump Truck	2	65	130	1040	2080	
Equipment Operators	7	50	350	2800	5600	
Laborers	6	41	246	1968	3936	
Fill Dirt	5	200	1000	1000	1000	
AVG. TOTAL				$\$ 2,065$	$\$ 9,520$	$\$ 18,040$

Equipment	Number			Subtotal/Hr.	$x 8$ Hrs.	2 Day Cost
Dozer		2	75	150	1200	2400
Compactor		2	80	160	1280	2560
Grader		1	90	90	720	1440
Dump Truck		2	70	140	1120	2240
Equipment Operators		7	65	455	3640	7280
Laborers		6	42	252	2016	4032
Fill Dirt		5	400	2000	2000	2000
HIGH TOTAL				\$3,247	\$11,976	\$21,952

	Hypothetical Costs For 5 Acre Grading	
$\$ 25,000$		$\$ 21,952$
$\$ 20,000$	$\$ 18,040$	
$\$ 15,000$		
$\$ 10,000$		
$\$ 0,000$		

PREDICTING SOIL LOSS

THE REVISED UNIVERSAL SOIL LOSS EQUATION (RUSLE)

$$
A=R \times K \times L \times S \times C \times P
$$

There are 6 major factors affecting soil loss according to the RUSLE:

A = Average annual soil loss (tons/acre)
$R=$ Rainfall erosion index (100 ft. tons/acre-in/hour)
K= Soil erodibility factor (soil survey data)
L = Slope length factor (dimensionless)
S = Slope gradient factor (dimensionless)
C = Vegetative cover factor (dimensionless)
$\mathrm{P}=$ Erosion control practices factor (contractor)

PREDICTING SOIL LOSS

A - The Soil Loss Factor

This is an estimated annual average of the soil eroded from the site in an average year.

PREDICTING SOIL LOSS

- R - The Rainfall Erosion Index
- This is a measure of erosive force/intensity of rain in a normal year.
*Current Isoerodent Map (EPA2001)

PREDICTING SOIL LOSS

Comparing Rainfall Factors Universal Soil Loss Equation

PACIFIC NORTHWEST

$R=500-600$

- Although the Olympian Rain Forest receives twice the annual rainfall of Florida, the R Factors in Florida are much greater.
- Due to rain drop geometry and rainfall intensity Florida has a climate with very erosive conditions (high R Factors).

HAWAII

PREDICTING SOIL LOSS

- K - The Soil Erodibility Factor
- A measure of the soil's susceptibility to detachment and transport by rainfail and runoff.

http://websoilsurvey.nrcs.usda.gov

PREDICTING SOIL LOSS

- L and S - The Slope Length and the Gradient Factors
- This is described by the combined effect of slope length and slope gradient.

PREDICTING SOIL LOSS

- C - The Vegetative Cover Factor
- This is the ratio of soil loss from land under specified types of cover to the corresponding loss from tilled or disturbed bare soil.

PREDICTING SOIL LOSS

- P - The Erosion Control Practices Factor
- This accounts for the selected erosion control practices of the contractor that reduce and control the erosion potential of the runoff by reducing the runoff velocity and the tendency of runoff to flow directly down slope.

PREDICTING SOIL LOSS

Rainfall is the only factor not under your control!

What can you do to minimize soil loss?

1. Protect soil from raindrop impact
2. Minimize compaction when appropriate
3. Minimize slope length
4. Minimize slope gradient (steepness)
5. Minimize peak flow

Project Site 1

Sand/Clay Soil

No ESC BMPs
5.0 acres, $L=600 \mathrm{ft}$. 5% slope, and $K=0.28$

How much sediment can be lost from this site after a 2 -inch $(50-\mathrm{mm})$ rain event?

SY $=24$ cubic yards?
SY $=66$ cubic yards?
SY $=98$ cubic yards?

5 Dump Truck Loads Of Soil Lost

Project Site 1
 Sand/Clay Soil
 5.0 acres, $L=600 \mathrm{ft}$.,5\% slope, and $K=0.28$

Add Seed and Mulch

After 2.0 inches of rainfall, how much soil will be lost?

After 2.0 inches of rainfall, how many acres of exposed slope lost 66 cubic yards of sediment?
1.0 acres
2.5 acres
4.0 acres

In Summary:

$>$ Be concerned about sediment yields
>Don't leave bare ground conditions for extended times
$>$ Large amounts of sediment can leave the site
>Stabilize disturbed lands ASAP to save money

You Have To Spend

 Money To Save Money
Costs of Erosion:

- It costs between $\$ 35,000-\$ 50,000$ to use a vac-truck to clean out the storm drains on an average multi-family neighborhood.
- It costs between $\$ 8,000-\$ 15,000$ to chemically treat a turbid stormwater pond (3-8 acres).
- There are usually multiple stormwater treatment BMPs (ponds, pipes, vaults, swales, etc.) on an average multi-family neighborhood.
- Worst case scenario where the entire stormwater system must be cleaned and restored to functionality may cost $\$ 100,000$ or more.
- Failure to control erosion costs time, material, and money.

Vac Truck Clean-out

Clay Sediment Clogging
 Infiltration Treatment Pond

Chemical Treatment of Stormwater Pond

Erosion Exposing 15KV Powerline

Maintain and Correct This

Before It Leads To This

Or Becomes Catastrophic

Contact information:

Applied Polymer Systems, Inc. info@siltstop.com
678-494-5998

Eddie Snell
Eddie.Snell@siltstop.com
404-915-9165

