Back On The Road: Emergency Highway Restoration After A Hurricane

Eddie Snell, Applied Polymer Systems, Inc.

US 98 (Franklin County) Soft Armor Countermeasures Utilizing Polymer Technology (Case Study)

Josh Boan, FDOT EMO Michael Shepard, FDOT Drainage Steve Iwinski, Applied Polymer Systems, Inc.

Study Area: Florida Panhandle

US 98 Between Eastpoint & Carrabelle

July 10, 2005 Hurricane Dennis

Hit the coast as a strong Category 3 hurricane.

• Wind gusts > 120 mph

- Rainfall + 7 inches
- Storm surge + 7 feet

Hurricane Dennis Track

Severe structural damage to coastal dwellings.

Structural Damage From Hurricane Dennis

Highway 98 Impacts

07/10/2005 1:03 pm

Severe impacts to coastal Highway 98

Damage from 6-8 feet storm surge + waves

Emergency Repairs Needed!

EMERGENCY REPAIR CONTRACT

\$10.8 Million Contract awarded - C.W. Roberts
 Goal to re-construct and open traffic on US 98 (approximately 14 miles)

Emergency repairs to be completed in 14 days

August 2, 2005

✓ Emergency Contract Complete
 ✓ Travel Lanes Reconstructed
 ✓ Traffic Restored

<One week later, problems!

Rainfall runoff causing erosion of coastal slope and shoulder

Rill erosion on slopes

Fill material eroding beneath new sod

Slope Repair Design Objectives

- Quickly Protect & minimize erosion of front slopes and shoulders
 - Requires low maintenance solution
 - Vegetation that can resist harsh environment
 - Short-term (1-2 years) solution until more "permanent" countermeasures are identified
 - Accommodates future construction of paved shoulders
 - Cost effective design

Initial Design Considerations

- Curb and Gutter
- Placement of Rolled Erosion Control Product (RECP) with Seed or Sod
 - Erosion Control Blanket (ECB)
 - Temporary, Degradable
 - Moisture Retention
 - Desirable to use with Polymers
 - Cost Effective

Initial Design Considerations

Turf Reinforcement Mat (TRM)
Permanent, Non-degradable
High Tensile Strength
Predominately used for High Velocity Channels or Steep Slopes
Costly (\$12-\$15 SQ YD)

District 3 and CO Coordination

- Reviewed sample of proposed TRM
 Field Review of site conditions
 - Slopes
 - Soils
 - Existing Vegetation
 - Other Site Challenges
- Reviewed alternative solutions
- Consulted with polymer vendor

Final Selection of Soft Armor Countermeasure Matrix

Soft Armoring Technique

 Cost Effective
 Meets All Design Objectives

Key components

- Compost
- Jute Erosion Control Blanket (ECB)
- Polyacrylamide (PAM) Holds Soil Structure
- Vegetation (Bermuda Sod)

Soil Structure

The arrangement of sand, silt, and clay particles to form larger aggregates.

• Organic matter is the glue that holds the aggregates together

Large pores (spaces) between aggregates are filled with air in a moist soil.

<u>Small pores</u> are filled with water in a moist soil. Even smaller pores inside the aggregates (not shown) are also filled with water.

GOOD STRUCTURE

PAM Supports Good Soil Structure

Untreated vs. Treated

Why Soil Structure Is Critically Important

Good soil structure

Sod installation on sand failed shortly after repair due to unstructured soil exposed to inundation. Sod roots failed to penetrate for stabilization of soil.

Stormwater inundated loose, unstructured soil which separated from sod causing erosion failure

University of Central Florida Stormwater Academy Testing

Polymer Treated

Untreated

POLYMER ENGINEERING USDA

PAM increases vegetative root structure

Rolled Bermuda sod was recommended as final cover over the polymer enhanced BMP

Sod	
ute & Polymer	
Compost	
Sand	

PAM holds soil structure together and retains moisture in compost. The compost encourages deep root penetration through jute, PAM, and compost.

MAMMAMAN

Enhanced soft armoring BMP creates a flexible matrix of deep vegetative roots and articulating jute fiber. This builds strong soil structure.

Scope of Services

Work consists of:

removing existing turf

- blade/shape existing shoulders & front slopes
- preparation & placement of 2" depth compost

erosion control blanket (jute mat)

 polyacrylamide powder (QPL# M-0203) placed at 25lb/ac as directed by the engineer & Bermuda grass sod

Granular PAM powder applied at 25 lbs./acre over jute

Rolled Bermuda sod applied as final vegetative cover

H

Contract Quantities and Cost

Pay Item	Description	Unit	Quantity	Unit Price	Total
101-1	Mobilization	LS	1	75000.00	75,000
102-1	MOT	LS	1	30000.00	30,000
577-70	Shoulder Rework	SY	71,000	2.00	142,000
104-13	Sitl Fence Staked Type III	LF	32,500	2.00	65,000
	Finish Soil Layer (Compost)				
162-3-100	(2")	SY	71,000	2.00	142,000
575-1-6	Sodding	SY	71,000	2.65	188,150
	Silt Stop Powder QPL M-				
104-1-100	203 Misc Erosion Control	LB	300	50.00	15,000
104-1	Artifical Covering	SY	51,000	1.50	70,500
570-9	Water for Grassing	MG	440	25.00	11,000
				Total	\$744,650

8 MONTHS LATER:

Still Performing

One year after placement showed no erosion or need for further repair. This area was hit by a tropical depression and a category 1 hurricane within 100 days after initial installation.

For several years no erosion was reported over the 22.5 km (14 miles) showing that beach sands can be stabilized even under hurricane conditions.

Agglomerated Soil

Polymer + Soil + Surface Area = Bonded Matrix

The agglomerated matrix held even after sod wear by traffic

Summary:

Roadways difficult to stabilize in sandy soils (unstructured soil) Soil structure temporarily held with PAM Vegetative root structure enhanced with compost and PAM Cost effective (more when planned work) Soft armor BMP should be considered in emergency repair guidelines

Original Presenters

Joshua Boan (850) 414-5266 joshua.boan@dot.state.fl.us

Michael Shepard (850) 414- 4330 michael.shepard@dot.state.fl.us

> Steve Iwinski (678) 494-5998 Info@siltstop.com

Acknowledgements

• Greg Ouzts – District 3

Marlon Holzbach – VMS Inc

Contact

Eddie Snell Technical Specialist Applied Polymer Systems, Inc Eddie.Snell@siltstop.com 404-915-9165